Enhanced Oil Recovery Combined with Carbon Storage: means, status and barriers to deployment

Egide Nzojbwami, Bob Arnold, Reza Shadnam Technosol Eng., KPMG

ECONOMIC POTENTIAL FOR CO₂ EOR IN ALBERTA

- \square Potential for CO_2 EOR use in Alberta: 10-20 Mt/yr of CO_2
- ☐ Incremental production: 1.4 billion barrels of incremental oil production.
- ☐ Potential extension of production in the conventional Alberta oilfield by 20 to 30 years.

Source: ICO₂N 2009: Carbon Dioxide Capture and Storage – A Canadian clean energy opportunity)

Your Key to

Groundwater and Petroleum Hydrogeology
Carbon Management

Integrated Environmental Solutions

ANALOGUES FOR COMMERCIAL CO₂ EOR

- \square CO₂ EOR technologies in commercial scale applications for over 30 years in the United States.
- □Transport is very well understood. Large amounts of CO₂ routinely transported via pipeline.
- \square 33 million ton of CO_2 are injected every year in US for 74 EOR projects for a combined production of 234,000 barrels per day.
- ☐ Cenovus Weyburn and Apache Midale projects in SE Saskatchewan: 30,000 and 6,500 barrels per day.

Your Key to

Groundwater and Petroleum Hydrogeology

Carbon Management

Integrated Environmental Solutions

RESIDUAL OIL ZONES (ROZ)

EMERGING OPPORTUNITY FOR CO₂ EOR

- □ ROZ: Partially saturated; produce non- commercial volumes of oil under primary or secondary production. Generally not completed or even drilled.
- \square EOR possible where S_{ow} >20%, similar to waterflood swept intervals.
- ☐ Extensive and thick ROZ exist below the OWC in many pools of Alberta, under certain geologic and hydrodynamic conditions.
- ☐ Reservoir modelling in US: CO2 EOR in TZ/ROZ would technically double current recoverable resources, with a significant increase of sequestered CO2 through EOR.

Your Key to

- Groundwater and Petroleum Hydrogeology
- Carbon Management
- Integrated Environmental Solutions

MAJOR BARRIERS FOR CO₂ EOR INDUSTRY IN WESTERN CANADA

☐ Lack of readily available pure CO, source

- •Man made: only sources available in Western Canada.
- Natural sources of CO₂ known in WCSB (i.e. SE Saskatchewan).

■Lack of transportation infrastructure

- •No pipeline infrastructure for CO2, unlike US
- ACTL project: Base for CO2 EOR development in Alberta.

☐Fragmented ownership

- •CO2 EOR done on a pool-wide basis, but many pools with 50+ stakeholders.
- •Many parties involved: province, native bands, landowners, freehold rights owners, other operators in the pool.

■Other obstacles

- •limited technical expertise,
- •long-term commitment (strategic versus opportunistic outlook required),
- •certain corporate structures less suited to take on CO2-EOR risks, and
- •volatility of oil prices.

Your Key to

- Groundwater and Petroleum Hydrogeology
- | Carbon Management
- Integrated Environmental Solutions

Field Trial Example

Unknowns

Parameter	Twofreds	Lost Soldier	Wertz
OOIP, MMSTB	15.4	240	172
Pore volume, MMRB	33.7	299	222
Injection rate, RB/day	4,322	101,800	136,000
Initial formation vol. factor, RB/STB	1.18	1.12	1.16
Initial water saturation, %	46.2	10	10
E _R , %	17.2	11.2	10.1
Terminal oil cut, %	1	2.3	1.3
Δt_{D2}	0.025	0.02	0.03
Δt_{D3}	0.28	0.24	0.24
Δt_{D4}	1.25	1.7	1.95
Δt_2 , mo.	6	1.9	1.6.
Δt_3 , yrs	6.0	2.0	1.0
Δt ₄ , yrs	27.9	12.7	8.9
t _{iWF}	1/1/1969	1/1/1988	1/1/1985
q _{iWF} , STB/day	450	2900	6200
bwf	0.10	0.50	0.01
D _{iWF.} %/year	70	40	30
b _{iEOR}	0.30	0.20	0.10

Experimental Costs			
Drilling new wells or reworking existing wells			
Experimental design costs	Labour		
Investigator	Materials		
Labour	Equipment		
Materials	Various miscellaneous costs		
Equipment	Normal well operation and maintenance		
Providing surface equipment for new wells	Labour		
Experimental design costs	Materials		
Investigator	Equipment		
Labour	Lifting costs of the produced fluids		
Materials	Experimental design costs		
Equipment	Investigator		
Installing the CO2 recycle plant	Labour		
Experimental design costs	Materials		
Investigator	Equipment		
Labour	Costs of capturing, separating and reinjecting the produced CO2		
Materials	Experimental design costs		
Equipment	Investigator		
constructing a CO2 spur-line from the main CO2 trunkline	to the Labour		
oil field	Materials		
Experimental design costs	Equipment		
Investigator			

References

- [1]http://www.energy.ca.gov/process/pubs/electrotech_opps_tr113836.pdf beautiful overview + diagrams
- [2]http://www.ogbus.ru/eng/authors/RamazanovDN/Ramaza novDN 1e.pdf - Russian economic simulation
- [3]http://www.netl.doe.gov/energyanalyses/pubs/storing%20co2%20w%20eor_final.pdf
- [4] http://www.co2-norway.com/download.asp?DAFID=28&DAAID=6- Brage Field [5]http://193.88.185.141/Graphics/Olie_Gas/Produktion/EOR /EOR Report Final.pdf literature survey